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Abstract. The existence of stylized facts suggests that there might be ‘universal’ mechanism which drives
price evolution on financial markets in general. Based on empirical estimates of 10 major indices, we
propose a stylized model of endogenous price formation on an aggregate level whose key issue is that
price evolution is driven by the ‘market’s’ expectations about future growth rates of investment. The
model is a multiplicative random process with a stochastic, state-dependent growth rate which establishes
a negative feedback component in the price dynamics which admits some far reaching formal analysis.
Generated return trails exhibit statistical properties such as ‘volatility clustering’, multi scaling, and a non-
Gaussian distribution which is in quantitative in agreement with stylized facts from empirical asset returns.
Additionally non-equilibrium entropies are also considered. These results suggests that the structure of the
model mimicks a mechanism which is essential in driving price dynamics of financial markets in general.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

A financial market is constituted by a large number of
financial agents which interact by trading assets. Dur-
ing trade asset prices are determined due to aggregate
demand, mediated by the trading mechanism of the re-
spective stock exchange. Therefore prices have to be re-
garded as macro-observables. Statistical Physics suggests
that macro-observables, when being typical properties of
the system, are independent from micro realizations of the
complex system and therefore are common to (almost) all
its realizations [1]. Consequently prices should be indepen-
dent from individual trading decisions. Apart from practi-
cal implementation problems, this seriously asked whether
for modeling these macro observables it is necessary to
write down individual motions of equations. Consequently,
when describing prices, we neglect any so-called micro-
founded considerations of individual decision making.

The statistical properties that are invariant under the
choice of a particular realization of the system, are called
‘stylized facts’, for a survey see [2] and also the mono-
graphs [3,4] as well as the references in them. Stylized facts
can be regarded as constraints for any modeling attempt.
During the last years a number of models have been pro-
posed which are able to produce selected stylized facts.
Some of them are based on the mathematical assump-
tions such as stability [5] or multifractality [6,7], while
others are mostly descriptive in that they consist essen-
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tially in postulating that prices follow particular stochas-
tic processes which generate certain distributions such as
Levy-processes [8] or hyperbolic processes [9–12]. Within
the zoo of models, the family of models of interacting
agents also have to be mentioned, see [13] for a detailed re-
view. However, data do not admit a unique choice among
these models. In other words, stylized facts are not strong
enough to single out a unique model of a financial market.
Simplicity of the model and the possibility for far-reaching
analytical tractability might be a further criterion.

Our viewpoint is that the existence of stylized facts
suggests that price trails might be considered as realiza-
tions of a more general random/complex system, called
‘The Financial Market’. Stylized facts, then, are sta-
tistical properties which are typical for realizations of
the financial market. Given this view, the question fol-
lows whether there might exist a simple and economically
plausible mechanism which drives a financial market in
general.

The modeling approach in this note is to start by
proposing a zero-order model for the dynamics on a macro
level, which is as simple as possible, then to investigate its
properties in some depth and to compare these proper-
ties with those of real data, to recognize the differences
between this zero-order model, and then to add more
structure to it to bring its properties closer to empir-
ical estimates. Along this way, we hope to successively
obtain more knowledge about fundamental features of a
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Table 1. For each index, we considered daily data from
01/01/1990 to 12/31/2004 provided by Thompson Datas-

tream. The NIKKEI is from 10/30/1986 to 12/30/2005.

1 France CAC 40
2 Germany DAX 30
3 Hong Kong Hang Seng
4 Japan NIKKEI 225
5 Switzerland Swiss Market Index
6 Switzerland Swiss Performance Index
7 United Kingdom FTSE 100
8 United States Dow Jones IndAvg
9 United States Nasdaq 100
10 United States S&P500

mechanism driving price dynamics in financial markets in
general.

1 On the empirical basis

“It may well be true that a set of assumptions is reasonable
from a logical standpoint. But this does not prove that it cor-
responds to nature’. Your are right, dear skeptic. Experience
alone can decide on truth”

A. Einstein

In this section, we sketch the empirical basis we are con-
cerned with. We consider the dynamics of prices (Xt)t≥0

and the statistical properties of price changes. The ap-
proximation of relative price changes by the corresponding
logarithmic returns

Xt+1 − Xt

Xt
≈ ln

Xt+1

Xt
=: Z̃t

is reasonable if ‖Xt+1−Xt‖ is sufficiently small. This poses
some restrictions on the smoothness of the market and/or
on the time scale to be considered. For comparison of re-
turn trails from different markets, we standardize these
trails according to

Zt =
Z̃t − µ(Z̃t

σ(Z̃)

where µ(Z̃) is the mean of (Z̃t) and σ(Z̃) the standard
deviation. By construction µ(Z) = 0 and σ(Z) = 1 for all
trails (Zt). We considered the 10 major indices displayed
in Table 1.

In this note we consider three (classes) of major styl-
ized facts:

– ‘volatility clustering’: the existence of long-lasting auto
correlations in absolute returns;

– multi scaling behavior: the non-linear spectrum of local
Hurst exponents

– distribution of relative price changes: its non-Gaussian
character and skewness.

These statistical properties are qualitative the same for all
indices. Therefore we can restrict ourselves to presenting

only present one index, which is the NIKKEI 225, in the
following.

Figure 1 shows these stylized facts for the NIKKEI 225
index, daily data from 10/30/1986 to 12/30/2005. The up-
per left picture shows the return trail of the NIKKEI 225.
It clearly exhibits some degree of ‘volatility clustering’.
The upper right picture displays the slow, polynomial,
decay of the autocorrelation of squared absolute returns,
which is taken as a quantitative measure of ‘volatility clus-
tering’. Due to the existence of long lasting memory effects
in the system, the singularity spectrum is non-linear. Fi-
nally, the distribution of returns is shown in the lower right
picture. The deviation from the inscribed Gaussian curve
(dashed black parabola) clearly shows that the distribu-
tion is not Gaussian and slightly skewed, while tails are
slightly fatter than those of the exponential distribution.
Some remarks on the mentioned statistical properties may
be in place here.

Concerning volatility clustering it might be im-
portant to recall that volatility is not a direct observ-
able [2]: while the shape of the return trail suggests a
decomposition of returns in a product of some pure noise
εt and a conditioned ‘volatility factor’ σt, i.e. Zt = σt εt,
this decomposition is only satisfied on the basis of some
pre-given model like GARCH. Particularly the volatility
factor σt is not model free. Instead we consider the decay
of autocorrelations of integer-powers of log-returns. As ini-
tially pointed out by Ding and Granger, the decay is slow,
i.e. polynomial

Ca(τ) := cov(|Zt+τ |a, |Zt|a) ∼ τ−γa , a = 1, 2, . . .

where γa < γa′ whenever a < a′. The polynomial decay of
squared absolute returns C2(τ) is taken as a measure for
volatility clustering. In a double-logarithmic plot of Cα(τ)
versus α, we expect to see a line for large τ .

The spectrum of local Hurst exponents serves as a mea-
sure of the regularity of the time-trails. While the singu-

larity spectrum τ(q) of a fractional diffusion process
is a linear function of the moments q, the empirical spec-
trum is clearly non-linear. Note that a system generating
a time series exhibiting multi-fractal behavior is not nec-
essarily multi-fractal itself. Aside from simple statistical
reasons such as finite coarse-graining and the finiteness
of the sample size, Bouchaud et al. pointed out that long
lasting effects as induced by volatility clustering can au-
tomatically lead to this multi-scaling behavior. As shown
in [14], short time series of mono-fractal processes such
as simple random walks may exhibit a nonlinear Hurst
spectrum, while so-called apparent multi-fractality is also
known from other systems, see [15], including multiplica-
tive random walk as well [16]. This particularly means
that a non-trivial singularity spectrum does not necessar-
ily imply that the financial market is truly multi-fractal.
Models of a financial market as a true multi-fractal sys-
tem have been proposed quite recently [6,7,17]. For review
and an extended literature survey about multi-fractality
in finance see [18,19]. For a critical review also see [20].
However, these findings may help to understand why the
singularity spectrum of assets typically is non-linear and
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Fig. 1. Stylized facts of empirical asset returns: daily data of the NIKKEI 225 from 10/30/1986 to 12/30/2005.

moreover seems to be equal for all assets. However, the
singularity spectrum of the NIKKEI return trail is non-
linear.

Finally, the distribution of log-returns is non-
Gaussian, in that large returns have a significantly higher
probability to occur than to be expected if the distribution
would the a Gaussian. Careful investigations have shown
that empirical distributions are well fitted in the center
by a Levy distribution, while their tails are typically less
heavy than those from a Levý distribution. Alternative
distributions have been proposed in the past, based on
various assumptions such as stability and multi-fractality,
as well as based on analogies with other processes includ-
ing turbulence or transport.

1.1 A first suggestion from data?

Often the inspection of data gives a first orientation for
later modeling. In this section we investigate our data
which are daily returns over a 15-years period. Quantile-
Quantile plots provide a good descriptive method to judge
about whether two sets of data come from the same dis-
tribution. A line indicates that data in both sets are very

likely to come from the same distribution. As an example,
we consider the NIKKEI 225. Figure 2 shows the QQ-plot
of the empirical time series of log returns Z with respect
to an exponential distribution. The left column considers
positive log-returns Z+ := Z≥0, while the right column
is for negative log-returns Z− := Z≤0. The first row dis-
plays the QQ-plots of Z± which respect to the exponential,
while the second row displays a QQ-plots for ln |Z±| with
respect to the logarithm of the exponential. The scheme
see in Figure 2 thus is:

Z+ Z−
ln Z+ ln |Z−|

The QQ plots of all indices considered show the same pat-
tern: while the middle part of each QQ-plot is linear, sys-
tematic deviations from the straight line in the QQ-plots
occur for either small returns or large returns. Particu-
larly, deviations from the diagonal for the QQ-plot of Z±
are seen for high quantiles, while deviations form the line
in the QQ-plot of ln |Z±| exists for small quantiles. This
means that empirical returns deviate from being exponen-
tially distributed for large returns, see the first row, and
for very small returns, see the second row. This agrees
with the observations in the respective pdf’s, where we
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Fig. 2. QQ-plots of the NIKKEI with respect to the exponential distribution.

see that typically the empirical pfd has less mass in 0
than the Laplacian, while it’s tails are usually fatter than
those from the Laplacian.

The goodness of this eye-bowling impression can be
made more quantitative as follows. We compare two dis-
tributions with respect to their goodness to fit empirical
data. One is the exponential with parameter β, while the
other one is the Weibull with parameters (a, µ)

fexp
Z (z) =

1
µ

e−
z
µ

fWB
Z (z) =

m

z

(z

a

)m

e(−
z
a )m

.

The exponential distribution is obtains from the Weibull
in the case m = 1, while in the limit m → 0, fZ(z) approxi-
mates the Pareto distribution arbitrarily well, see [21]. Fits
of the distributions for positive and negative returns due
to these distributions therefore give respective parameters

µ =
(
µ+, µ−)

m =
(
a+, m+; a−, m−)

.

Therefore estimating the parameters µ and m is of spe-
cial interest. In the following we summarize log likely fits

of positive and negative returns, respectively, to the expo-
nential distribution and the Weibull distribution, giving
parameters µ± and (a±, m±) respectively.

Distributions are close to being symmetric µ+ ≈ µ−,
see Tables 2 and 3. Furthermore 0 � m± ≈ 1, i.e. their
distributions are close to an exponential distribution. This
finding is also supported by considering the respective en-
tropic distances between the empirical distribution and
the exponential and Weibull distribution respectively as
formalized by the Akaike’s Information Criterion

AIC = −2 log
(
L(θ̂|x)

)
+ 2 K,

where K is the number of parameters, here K = 1 for the
exponential and K = 2 for the Weibull distribution. The
term 2K can be considered as a penalty for introducing ad-
ditional parameters. L(θ̂|x) is the maximum log-likelihood
of the parameter θ given the data x. AIC is in particular
useful for nested model such as the exponential and the
Weibull in this case. However, we considered the ratio of
the AIC’s of both models

ratio =
L(exponential) + 1
L(Weibull) + 2

.
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Table 2. Parameter estimation for negative returns of the indices considered.

INDEX # Z < 0 µ− a− m− ratio
DAX 30 1806 0.6985 0.6613 0.8885 0.6671
SWISS SMI EXP 1066 0.7021 0.6762 0.9209 0.6673
FRANCE CAC 40 1849 0.7054 0.6869 0.9399 0.6671
FTSE 100 1840 0.7074 0.6997 0.9742 0.6671
SWISS SPI EXTRA 955 0.7342 0.6891 0.8820 0.6673
DOW JONES 1793 0.6891 0.6713 0.9437 0.6671
Hang Seng 1808 0.6393 0.6000 0.8815 0.6671
NASDAQ 100 1745 0.7077 0.6887 0.9405 0.6671
NIKKEI 500 1864 0.7500 0.7698 1.0688 0.6671
S&P 500 1799 0.6869 0.6663 0.9353 0.6671

Table 3. Parameter estimation for positive returns of the indices considered.

INDEX # Z > 0 µ+ a+ m+ ratio
DAX 30 1964 0.7057 0.7280 1.0840 0.6671
SWISS SMI EXP 1190 0.7003 0.7186 1.0683 0.6673
FRANCE CAC 40 1925 0.7454 0.7786 1.1285 0.6671
FTSE 100 1948 0.7339 0.7638 1.1129 0.6671
SWISS SPI EXTRA 1283 0.6634 0.6984 1.1615 0.6673
DOW JONES 1979 0.7223 0.7478 1.0948 0.6671
Hang Seng 1904 0.7038 0.7105 1.0229 0.6671
NASDAQ 100 2033 0.6933 0.7070 1.0485 0.6671
NIKKEI 500 1825 0.6592 0.6173 0.8699 0.6670
S&P 500 1983 0.7207 0.7373 1.0589 0.6671

As seen in Tables 2 and 3, the ratio is close to 2/3, which
indicates that the distribution of log returns can quite well
be approximated by an exponential. This evidence will be
important in the following.

In summary, investigations of the distribution of the
NIKKEI suggests that the distribution of logarithmic re-
turns is close to an exponential, while there are systematic
deviations in the center, i.e. for small returns, and also
for large returns. Particularly, small returns are less of-
ten than expected from the exponential distribution, while
large returns are more often. Thus, if taking the exponen-
tial distribution as a zero-order distribution for daily re-
turns, one has to consider these deviations in a first-order
approximation.

2 The basic model

People go to the financial market to make their money
work. They do so by investing their money into promis-
ing assets. At some time t, the agent has capital mt and
decides to invest a portion λt of it in asset A. His re-
quest in this asset may depend on its current price Xt;
we therefore write λt = λ(Xt). For λtmt, he can buy
|At| = λtmt/Xt units of this asset for its price Xt. One
unit of this asset has an uncertain value D̃t+1 some time
later. Hence in t+1, the money mt invested in asset A has
value Mt+1 = D̃t+1λt/Xt mt, and the money mt invested
has become ‘more’ valuable by a factor

γt+1 =
D̃t+1λt

Xt
. (1)

While the growth rate γt+1 is uncertain at time t, the
‘market’ builds an expectation about the future growth
rate at time t.

Γt+1 = ϕt(γt+1), (2)
where ϕt is assumed to be some strictly increasing func-
tion in its argument. An asset is promising if ‘the market’
expects that its value will increase, i.e. if Γt+1 > 1. It is
reasonable to assume that the demand in an asset is higher
the more promising it is. It then follows from equation (2),
that if the price is high, the probability that Γt+1 will be
larger than 1 is small and hence excess demand is likely to
be be small, while, on the other hand, if the price is low,
the probability for a growth rate larger than 1 is high,
so that excess demand in an asset with low price is high.
Since, according to standard economic thinking, prices fol-
low the excess demand, price evolution is intimately linked
to the market expectations about the future growth rate
of an asset.

Accordingly the price process is driven by the aggre-
gate expectation of ‘the market’ about future growth rates
of values, while the above mechanism establishes a strong
multiplicative stochastic feedback component in the dy-
namics of an expectation driven market. The above con-
siderations then gives rise to a simple dynamical system
for price evolution, see equations (3) and (9). For further
details see [22]

2.1 Basic assumptions

Our model will be based on the following general assump-
tions, i.e. it is restricted to the following settings. We
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consider a market with only one asset, whose future value
is described by some non-negative factor D̃. This factor
summarizes all exogenous influences that drive the future
value of the asset. Since the future value is uncertain,
we assume that it is distributed according some distri-
bution. This distribution is assumed to be stationary in
time. Since the very nature of this value factor is left open,
we only assume that it it takes finite values. Then, in order
to suppose a minimum of further assumptions, we assume
that D̃ is uniformly distributed in some non-negative, fi-
nite interval. These throughout assumptions are summa-
rized in assumption (A).

[ 0, t ) = [ 0, 1) � [ 1, 2) � . . . � [ t − 1, t).

The next specification concerns the structure of the trad-
ing periods. For the sake of simplicity let X[t denote the
‘opening price’ in the period [t, t+1) and Xt+1) its closing
price. Consecutive trading periods are called ‘independent’
if Xt+1) is independent of X[t+1, i.e. the opening price of
period [t + 1, t + 2) is independent of the closing price
of the former period [t, t + 1). If, in the other extreme
Xt+1) = X[t+1, then the trading periods are said to be de-
pendent of each other. Reality tells us that that the truth
is somewhere in between. However, these two extremes are
considered as well, see Assumption (B).

The third class of assumptions concerns the ‘market’
expectation about future growth rates of the asset. The
assumptions on this function ϕt made are that ϕt(0) = 0,
while it is strictly increasing. We will deal with some ba-
sic variations. One is that this function is a power func-
tion. We also consider the case that this function is a log-
arithmic function. In this case market expectations are
also concave but unbounded. Finally we also consider this
function to be a negative exponential, which is concave
and bounded. The following distinction is more important:
The market expectation can be constant, i.e. ϕt = ϕ, or
it can fluctuate around some ϕ0. This is the content of
Assumption (C).

Here is a list of the assumption dealt with in this note.
In the following section we will explicitly state which par-
ticular assumptions are make at various levels.

(A) The structure of the market: one asset with stationary
and uniformly distributed uncertain value.

(B) The structure of trading periods: consecutive periods
are (1) independent from each other or (2) depen-
dent.

(C) The ‘market expectation’: believes about the future
growth rate can (1) be constant or (2) fluctuate
over time.

The zero-order model uses assumptions (A, B1, C1), while
the first order model uses assumptions (A, B2, C2).

3 The 0-order model

In this lowest order approximation the structure of the
financial market is simple: consecutive trading periods are
independent from each other while the market expectation

is the same in each period. The assumptions therefore are

(A) The structure of the market: one asset with station-
ary and uniformly distributed uncertain value.

(B1) The structure of trading periods: consecutive periods
are independent from each other.

(C1) The ‘market expectation’: believes about the future
growth rate are constant over time.

Let Xt be the opening price and X ′
t the closing price of

period [t, t+1). Then within [t, t+1) the price Xt evolves
to X ′

t due to a multiplicative process given by

X ′
t = Γt+1 Xt (3)

according to the expected growth rate of the investor given
by equation (2). In this setting the distribution over a
sequence of periods is the average over the outcomes of all
periods [t, t + 1), while all periods are indistinguishable.
We therefore omit the subscripts in the following.

Recall that the value factor D̃ is assumed to be uni-
formly distributed in a finite interval [0, d]. We define

α(X) := d
λ(X)

X
.

Due to these assumptions the growth rate Γ yields

Γ = ϕt

(
δ α(X)

)
δ ∼ U(0, 1). (4)

Given the opening price x, the conditioned probability
that the price relative is larger than some r ≥ 0 is given by

FR(r|x) = P [R > r|x] = 1 − 1
α(x)

ϕ−1
t (r).

For un-conditioning we average over all possible initial
prices x in the range 0 ≤ x ≤ χ to obtain the averaged
tail cdf of price relatives R

FR(r) = χ − ϕ−1(r)
∫ χ

0

1
α(x)

dx

where χ is determined by the condition 1
α(χ)ϕ

−1(r) = 1.

3.1 Effect of price depending demand

Under the assumption that the demand depends on
weakly on the current price, i.e. λ(x) = λ (1+ εx), where
ε is small, we obtain from χ ≈ λ

ϕ−1(r) + ε λ2

ϕ−1(r)2 + O(ε2)
for the unconditioned tail distribution

FR(r) =
λ

2
1

ϕ−1(r)

(
1 + ε

2 λ

3
1

ϕ−1(r)

)
+ O(ε2). (5)

Defining φ(r) := ϕ−1(r), the unconditioned pdf of price
relatives yields

fR(r) =
λ

2
φ′(r)
φ(r)2

[
1 + ε

4
3

λ

φ(r)

]
+ O(ε2).
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Fig. 3. For ε > 0, f
(ε)
Z is convex, while it is a Laplacian for

ε = 0, and for ε < 0 it is concave.

Since ϕ is non-negative and increasing, so is φ. We
can therefore define a function Φε(r) so that f ε

R(r) =
λ e−Φε(r)/2. The average tail distribution of log-returns
Z = ln R yields

f ε
Z(z) =

λ

2µε
exp

{
z − Φε (ez)

}
. (6)

with normalization constant µε.

Observation 1 (Effect of price depending demand.)
Let price dependence of demand be

λt = λ(1 + εXt), ε < 0,

Note that Φ0(ez) = − ln φ′(ez)
φ(ez)2 , while Φε(e

z)
Φ0(ez) → 1 for z →

∞. Consequently the correction term vanishes for large z.
For large |z| the distribution is independent of ε! For small
|z|, Φε gives a positive correction for ε > 0 and a negative
correction for ε < 0.

Example 1 For illustration we chose ϕ(r) = rµ, µ > 0.

In this case f0
Z(z) = e

|z|
µ /2µ is a Laplacian with inten-

sity 1/µ. In a semi-logarithmic plot, its graph is a ‘hard
tent’. If the demand function λt weakly varies with the
price level, the ‘hard tent’ becomes deformed in the central
part, i.e. for small returns. If demand decreases in prices,
ε < 0, the distribution becomes a soft tent, i.e. f (ε) is dif-
ferentiable in z = 0, while if the demand increases with
the price level, i.e. ε > 0, the distribution is convex, see
Figure 3.

3.2 Various simple ‘market’ expectations

Recall that the function ϕt represents the aggregate ex-
pectations of future growth rates in the market in period
[t, t + 1). Let us assume that ϕt = ϕ0 for all periods. The
question then is, which expectation function ϕ0 is reason-
able? In principle equation (6) allows one to construct an

expectation function so that the corresponding distribu-
tion fulfills given properties. Since ϕ0 is not observable,
the choice of this function contains some degree of arbi-
trariness. From an aggregation point of view this function
would have to be estimated from aggregating the expec-
tations of individual traders on the market. Thereby ar-
bitrariness is shifted down to the level of individuals. On
the other hand, since we want to propose a simple model
of price dynamics on the aggregate level and thus with-
out referring to any individual level, we stay with simple
functional forms which are commonly used in economic
modeling as well. Recall that the basic assumption on an
expectation function ϕ0 is that ϕ(0) = 0 while it is strictly
increasing in its argument. Three classes of functions are
the following:

1. the negative exponential ϕ0(x) = ν (1 − e−µx);
2. a logarithmic function ϕ0(x) = ln(1 + µx);
3. a power function ϕ0(x) = xµ.

In all cases α, β > 0. The negative exponential differs from
the other functions in that it is bounded by α, while the
others are unbounded. This shows off also in the distri-
butions generated. A straight forward calculation shows
that these functions generate the following return distri-
butions:

f0
Z(z) ∼ 1

4
ln

ν

ν − 1
e|z|(

ν − e|z|
) ln

(
1 − 1

ν
e|z|

)−2

, |z| ≤ ln ν

→ 1
2
e−|z| for ν → ∞

f0
Z(z) ∼ e − 1

2
e|z|

ee|z|

(
1 − ee|z|)2 → e − 1

2
e|z|−e|z|

for |z| → ∞
f0

Z(z) ∼ 1
2 µ

e−
1
µ |z|.

Obviously the distribution for the negative exponential is
defined only for sufficiently small returns |z| ≤ ln ν, while
it has a singularity in |z| = ln ν. In the limit ν → ∞, tails
decay exponentially. The distribution of the logarithmic
expectation is parameter free, i.e. independent of µ and,
asymptotically, decays faster than exponentially. Finally,
the power function generates a symmetric Laplacian with
intensity 1/µ, i.e. its tails are semi-fat tailed.

As already discussed in the previous section, the ex-
ponential distribution does a good job. The negative ex-
ponential has the property that the behavior in the tails
is independent from any parameter, while the distribu-
tion corresponding to the log-function decays faster than
the exponential, while data clearly show that the decay is
faster. The goodness of the exponential distribution func-
tion is also justified by the following finding.

3.3 The effect of fluctuating market expectations

From Section 2 it is clear that the tails of the empir-
ical return distributions are more heavy than those of
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Table 4. The range of standardized returns of indices indi-
cates typically is within [−10, +10]. The corresponding distri-
butions are shown left.

INDEX min Z max Z
DAX 30 –6.8099 5.1869
SWISS SMI EXP –5.8302 5.7350
FRANCE CAC 40 –5.7229 5.1957
FTSE 100 –5.7071 5.6899
SWISS SPI EXTRA –7.8588 4.3435
DOW JONES –7.4663 6.1007
Hang Seng –9.2021 10.7154
NASDAQ 100 –5.3480 8.7963
NIKKEI 500 –5.7149 8.2194
S&P 500 –22.1810 8.4101

the exponential distribution. So, what is missing in our
model? Recall that we assumed that the market expecta-
tion is constant over all periods. On the other hand it is
more realistic to assume that market expectations are not
constant rather than fluctuate. The reason for time vary-
ing market expectations are manifold. In the following we
stay with the setting of independent trading periods but
now let the market expectation ϕt fluctuate over periods
around some ‘mean’ which is denoted by ϕ0.

In this section we analyze our model under the follow-
ing assumptions:

A The structure of the market: one asset with stationary
and uniformly distributed uncertain value.

B1 The structure of trading periods: consecutive periods
are independent from each other.

C2 The ‘market expectation’: believes about the future
growth rate fluctuate over time.

In the case of the power function, we therefore have

ϕt(λ) ∼ λµt

where µt is a random variable taking values in some nar-
row range around µ, i.e.

µ − ε ≤ µt ≤ µ + ε, 0 ≤ ε ≤ µ.

Assuming µt ∼ U([µ−ε, µ+ε]) we average the distribution
fµ

Z(z) over the interval [µ − ε, µ + ε] to obtain

fZ(z) =
1
4ε

[
Γ

(
0,

|z|
µ + ε

)
− Γ

(
0,

|z|
µ − ε

)]
. (7)

Expanding this expression for small ε yields

f̃Z(z) =
1
2µ

e−
‖z‖

µ

[
1 + ε2 c(|z|) + O(ε3)

]
(8)

where the correction term is

c(|z|) =
1

3 µ3

[
µ − 2 |z| + 1

2µ
|z|2

]

which vanishes for |z| → 0. Note that
∫

R
f̃Z(z) dz = 1.

Due to the form of the correction term, fluctuations
of market expectations in our model generate semi-heavy

Fig. 4. Return distribution in our model with fluctuating
liquidity parameter µ. The dashed line displays the Laplacian,
the red graph is the exact distribution fZ(z), while the blue
one corresponds to our approximation f̃Z(z).

Fig. 5. Fitting the return distribution of the Nikkei.

tails in the distribution, i.e. tails decay exponentially. The
effect of market fluctuations therefore decreases the large
µ is.

Proposition 1 (Effect of fluctuations.) Fluctuations in
the aggregate market expectation affect the distribution of
large returns. Particularly, tails are fatter the stronger
fluctuations are.

According to equation (3.3) the shape of the distribu-
tion in a semi logarithmic plot is described by

ln f̃Z(z) = c0 + c1 |z| + c2 |z|2,
where c0 = − ln 2µ + ε2/(3µ2), c1 = − (

1 + 2ε2/(3µ2)
)
/µ,

and c3 = 1/(2µ2) ε2/(3µ2). Fitting to empirical data gives
a satisfactory result.

4 Dynamics from depending trading periods

So far we considered the situation that successive trading
periods were independent from each other. Particularly
opening prices are independent from former closing prices.
This certainly contradicts intuition. However, in this set-
ting the resulting distribution is symmetric with respect
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Table 5. The skewness γ, and the kurtosis κ of the standard-
ized daily returns of the indices considered.

INDEX γ κ
DAX 30 –0.2364 6.9411
SWISS SMI EXP –0.1722 6.9098
FRANCE CAC 40 –0.0895 5.8251
FTSE 100 –0.0934 6.1410
SWISS SPI EXTRA –1.0403 7.9648
DOW JONES –0.2295 7.6912
Hang Seng –0.0308 13.0648
NASDAQ 100 0.1240 7.5741
NIKKEI 225 –0.1257 10.4664
S&P 500 –1.7449 42.9679

to 0, i.e. the probability for having a return of z is the
same as having a return of value −z. This is in contradic-
tion with empirical findings. In fact return distributions
are slightly skewed. This fact can not be explained in our
formal model version.

The following table displays the list of indices and the
non-trivial moments of the standardized returns Zt. By
construction the first two moments are µ(Z) = 0 and
σ(Z) = 1, while the skewness γ and the kurtosis κ yield:

Let us take seriously that opening prices are not in-
dependent from the former closing prices! The set of as-
sumptions now is the following:

A The structure of the market: one asset with stationary
and uniformly distributed uncertain value.

B2 The structure of trading periods: consecutive periods
are dependent.

C1 The ‘market expectation’: believes about the future
growth rate are constant.

The assumption that related closing and opening prices
are independent is unrealistic, of course. The other ex-
treme is that related closing and opening prices are iden-
tical in the sense that

Xt) = X[t.

In this case the evolution of prices is described by a simple
dynamical system given by

Xt+1 = Γt+1 Xt, t ≤ 0. (9)

Dynamics leave basic features of the distribution in the
stationary case unchanged, while it implies a qualitatively
new one feature: while the distribution in the stationary
case is symmetric, the distribution is asymmetric when
considering dynamics. This shown in the following.

4.1 Dynamics and the asymmetry of the distribution

Since the power function ϕ(x) = xµ already did a good
job, the following analysis is done for this function. In
the following we show that the resulting distribution is
symmetric for µ = 1, while it is positively skewed for µ > 1
and negatively skewed for µ < 1.

This argumentation can be made precise by consid-
ering price evolution as a process, i.e. assuming that
Xt+1 = X ′

t, in which consecutive prices are related by

Xt+1 = δµ
t X1−µ

t . (10)

Logarithmic prices ζt = ln Xt then satisfy the difference
equation ζt := µ ln δt + (1 − µ) ζt−1, whose generating
function — for ζ0 = 0 — yields

Fµ(s) = µ
∑
t≥1

ln µ st

1 − s + µs
. (11)

The coefficients cµ(t) of its Taylor expansion in s = 0
obey cµ(t) = ζt and hence Zµ(t) = ζt − ζt−1 = ln Xt

Xt−1
is

obtained from

Zµ(t) = cµ(t) − cµ(t − 1). (12)

If µ = 1 − a, |a| � 1, expansion of Zµ(t) in equation (12)
around µ = 1 up to first order in µ then gives

Zµ(t) = ln
(

δ1−a
t δ2a−1

t−1 δ−a
t−2

)
+ O(a2) (13)

Zµ is the sum of the following random variables Yj derived
from δt−j ∼ U(0, 1), j = 0, 1, 2 with probabilities fYj (z)
respectively

Y0 = (1 − a) ln δt, fY0(z) = c0 e
z

1−a I(−∞,0)

Y1 = (2a − 1) ln δt−1, fY1(z) = c1 e
z

2a−1 I(0,∞)

Y2 = −a ln δt−2, fY2(z) = c2 e
z

−a I(0,∞)

where normalization constants yield c0 = 1/(1 − a), c1 =
1/(1 − 2a), c2 = 1/a. Since the Yj are independent, the
probability density of the compound variable Zα is the
convolution of the densities of the compound variables,
i.e.

fZ(z) =
{

c1 c2 (fY1 � fY2)(z) z > 0
c0 fY0(z) z ≤ 0.

(14)

Thus, up to a normalization for |Z| 	 0, the distribution
is given by

fZ(z) =

{
1

1−3a e−
z

1−2a z ≥ 0
1

1−a e
z

1−a z ≤ 0.
(15)

Therefore, in a semi-logarithmic plot we see a tent — with
an exponential correction for small z — according to

ln fZα(z) ∼
{− z

1−2a z > 0
+ z

1−a z ≤ 0.

For µ = 1 the distribution is symmetric.

ln fZ1(z) = − ln 2 − |z|. (16)

If µ < 1 (a > 0), positive returns are less probable than
in the symmetric case, while if µ > 1, (a < 0), positive
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ln fZµ(z)
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Fig. 6. Positive skewness of the return distribution for µ > 1.

ln fZµ(z)
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z

Fig. 7. Negative skewness of the return distribution when
µ < 1.

returns are more probable. Hence a positive a, i.e. µ < 1,
relates to negative skewness while µ > 1 corresponds to
positive skewness. This is in contrast to the case where
trading periods all independent, since there the distribu-
tion is symmetric for all µ, see [23]

ln fZ(z) = − ln(2µ) − |z|
µ

µ > 0. (17)

5 The first-order model: taking all together

We saw in the previous section that using a power function
for representing market expectations leads to a Laplacian
type of distribution of logarithmic returns. Comparison
with real data showed that the agreement is not bad, while
there are two systematic deviations. Small returns are less
probable than in the exponential distribution while large
returns are more likely. Both effects were identified to be
due to the following: If demand decreases with increasing
prices, small returns become less probable. Further, if the
market expectation fluctuates, large returns become more
likely. Further, when considering dynamics, our model ex-
hibits an asymmetric distribution. Finally let us therefore
consider the ‘full-blown’ model proposed. The assump-
tions made are the following

A The structure of the market: one asset with stationary
and uniformly distributed uncertain value.

B2 The structure of trading periods: consecutive periods
are dependent.

C2 The ‘market expectation’: believes about the future
growth rate fluctuate over time according to

ϕ(r) = rµt .

Figure 8 displays the stylized facts generated by this
model. Inspections show that the return trail exhibits
‘volatility clustering’, measured by the slow (polynomial)
decay of the autocorrelation of squared returns. The gen-
eralized Hurst spectrum is non-linear, while the distribu-
tion is slightly skewed and exhibits tails that are more
heavy than those of an exponential distribution. In sum-
mary, this model generates return trails whose statistical
properties are in good agreement with respective stylized
facts from empirical asset returns.

6 On ‘the’ entropy of our stylized financial
market

Entropy can be regarded as a measure of the unpredictabil-
ity of the market: the higher the entropy is the less pre-
dictable the time series of returns is. Furthermore, while
even an infinite sequence of moments does generally not
determine a distribution uniquely [24], entropy gives an
additional characterization of a distribution which extends
the consideration of its moments. The entity we consider
is the empirical ‘entropy’ of the real financial market com-
pared with the entropy given by our model. The compari-
son of both will give us some hints concerning the goodness
of the zero-order approximation.

Concerning entropy the following has to be kept in
mind: without a deeper understanding of the microscopic
basis, no unique choice between different ‘entropies’ is pos-
sible. While the Boltzmann-Gibbs entropy is adequate in
the regime of strong chaos (exponential mixing), many
natural system including economic system do not accom-
modate this hypothesis. This should be kept in mind con-
cerning recent approaches to use entropy related principles
for option pricing [25]. Apart from the Boltzmann-Gibbs
entropy, two alternative entropy measures have been con-
sidered in the past. One is the Renyi entropy which has
turned out to be useful for characterizing multi-fractal
systems, the other one is the Tsallis entropy [26] which
has been shown to be interesting particularly for systems
which exhibit global correlations. Since we can not exclude
that multi-fractal systems can provide at least a good ap-
proximate description of a financial market, one should
take the Renyi entropy into account. On the other hand,
due to the existence of long-range correlations, a financial
market might be considered as a non-extensive system,
see [27,28] for considerations about the value of the non-
extensive statistical approach in finance. Therefore the
consideration of the Tsallis entropy is also in place.

Consequently we will look at the outcome of our model
through two glasses: one is the Renyi entropy, the other
one is the Tsallis entropy. We use these two measures as
instruments to judge about to which extent our model
reproduces corresponding properties of empirical data ei-
ther in one or in the other framework. For this purpose we
calculate the Renyi and the Tsallis entropies in our model
and compare it to empirical data.

Our zero-oder model obeying assumption A, B1, C1

with ϕ a constant power function model implies that re-
turns are (double) exponentially distributed with some



S. Reimann: Price dynamics from a simple multiplicative random process model 391

Fig. 8. Stylized facts generated by our model, the return trail, volatility clustering, multi scaling spectrum, and the return
distribution.

Fig. 9. The Renyi entropies Rβ of daily returns of the indices
considered.

non-negative parameter µ. We therefore estimate the re-
lated Renyi entropy defined by

Rβ(p) =
1

1 − β
ln

r∑
i=1

pβ
i , β = 1, 2, ... (18)

as well as the Tsallis entropy

Tq(p) =
1

q − 1

(
1 −

r∑
k=1

πq
k

)
, q = 1, 2, ... (19)

for our model, this gives Rth
β and T th

q , and compare each
with the respective entropy estimated directly from the

Fig. 10. The Tsallis entropies Tβ of daily returns of the indices
considered.

data, i.e. Remp
β and T emp

q . We consider a trail of log-
returns Z and partition the range into 2r > 0 cells each
of length 1/r. For later purposes we define

Cβ :=
1
2

e
β

µ r − 1

1 − e−
β
µ

(20)

Note that limβ→0 Cβ(p) = 1
2 r . Normalized probabilities

for micro-states k = −r + 1 . . . r are

πk =

{
Cβ e

k−1
µ r −r ≤ k ≤ 0

Cβ e−
k

µ r 1 ≤ k ≤ r.
(21)
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Fig. 11. The Renyi entropy Rβ and the Tsallis entropy Tq for
the NIKKEI 225. The theoretical entropies (dashed lines) are
calculated under the hypothesis that log returns are strictly
Laplacian distributed.

The Renyi entropy and the Tsallis entropy then yield

Rβ(p) =
1

1 − β
ln

Cβ
1

Cβ
(22)

while the Tsallis entropy reads

Tq(p) =
1

q − 1

(
1 − Cq

1

Cq

)
. (23)

Note that limβ→0 Rβ(p) = ln 2 r, while limq→0 Tq(p) =
2 r − 1, where 2 r is the number of cells considered.

We calculate the Renyi entropy Rβ as well as the Tsal-
lis entropy Tq for the indices listed in Table 1 for a fixed
number of cells r = 30. In the following we restrict our-
selves to the NIKKEI 225 see Figure 11. Former esti-
mates of the asymmetry of the distribution of negative
returns and positive returns, measured by the parameters
µ± showed that the distribution is (almost) symmetric.
For the NIKKEI 225 considered we have for the distribu-
tion of positive and negative returns, respectively:

µ+ = 0.728 µ− = 0.742.

Hence we considered the trail of absolute returns, i.e.
| ln Z|. We normalized returns to the unit interval by con-
sidering |Z∗| = |Z|emp

max |Z|emp
and estimated the correspond-

ing parameter µ from fitting the returns to a Laplace dis-
tribution giving µ = 0.776. This parameter then is taken
for calculating the theoretical entropies according to Ta-
ble 3. Corresponding graphs are the dashed lines, while
the solid lines are the empirical entropies from the data.
Deviation between the empirical entropies and the respec-
tive theoretical entropies are seen to be fairly small.
Figure 12 displays these differences as a function of β and
q respectively. Here

∆Rβ = Remp
β − Rth

β , ∆Tq = T emp
q − T th

q

While ∆Rβ is asymptotically constant and positive, ∆Tq

asymptotically decays exponentially in q.

Fig. 12. Comparison between the theoretical and the empir-
ical entropies.

These results has given support to our working hypoth-
esis that the market expectation function is well approxi-
mated by a power function ϕ(r) = rµ with some positive
parameter µ > 0 for the following estimations. Here have
to keep in mind, that the empirical entropy, whether it
is the Renyi or the Tsallis, is always larger then the en-
tropy, which was calculated based on the assumption that
the distribution is strictly Laplacian. This means that the
empirical distribution is broader then the theoretical one,
which is also seen in Figure 1: The Laplacian does not
have enough mass in its tails!

6.1 Fluctuating market expectations and the effect
on entropies

Assumptions are A, B1, C2, i.e. ϕt(λ) = λµt , where µt

fluctuates uniformly in time.
Since fluctuations increase the broadness of the return

distribution, one expects that the corresponding entropies
are increasing in the fluctuating parameter. This is indeed
justified by the following estimation. For the sake of sim-
plicity we consider the case of an infinite number of cells,
in which the Renyi and the Tsallis entropy become

Rβ(f̃Z) =
1

1 − β
ln

∫

R

f̃β
Z dz

Tq(f̃Z) =
1

q − 1

(
1 −

∫

R

f̃ q
Z dz

)

Expanding the solution for small ε we obtain

Tq(f̃Z) =
q − (2 µ)1−q

q (q − 1)
+

ε2

3 µ

(1 − q)21−q

q2 µq
+ O(ε4) (24)

Rβ(f̃Z) =
1

1 − β
ln

(2 µ)1−β

β
+

ε2

3 µ2

1 − β

β
+ O(β4). (25)

For notational convenience we write T 0
q (f̃Z) and R0

β(f̃Z)
for the Tsallis and the Renyi entropies with ε = 0 respec-
tively. Further we define ∆Tq(f̃Z) :=

∣∣ Tq(f̃Z) − T 0
q (f̃Z)

∣∣
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Fig. 13. Entropies Tq(f̃Z) (red) and Rβ(f̃Z) are shown as
compared to the entropies for constant market expectations
(thin black lines).

Fig. 14. For large β, q, ∆Rβ(f̃Z) < 0, while ∆Tq(f̃Z) ∼ 0.

and ∆Rβ(f̃Z) :=
∣∣ Rβ(f̃Z) − R0

β(f̃Z)
∣∣, respectively. Obvi-

ously

lim
q→∞ ∆Tq(f̃z) = 0

lim
β→∞

∆Rβ(f̃z) = −1
3

(
ε

µ

)2

< 0.

Therefore, the effect of fluctuations vanishes for the Tsallis
entropy with increasing q, while is does not for the Renyi
entropy.

Observation 2 Fluctuations of the market expectations
increase entropy for β, q < 1. corresponding to creating
more mass in the tails.

This means that the entropy increases when taking fluctu-
ations into account. Recall that in the case of our model
with constant parameter µ, the theoretical entropy was
less than the empirically observed one. From this part of
investigation we learn that an important ingredient seems

to be that market expectations are not constant but fluc-
tuate in time, which again seems to be economically plau-
sible. This finding can be seen as related to D. Farmers
suggestions that large fluctuations are caused by liquidity
fluctuations [29].

7 Conclusion

All models are wrong but some are useful.
G.E.P. Box, 1979

The existence of stylized facts suggests that price trails
of different financial markets might be regarded as dif-
ferent realizations of a more general stochastic system,
called ‘The’ financial market. If so then the question is
about the nature of this system, i.e. whether there ex-
ists a unique mechanism driving price formation which is
common to ‘all’ financial markets. The model proposed is
kept as simple as possible to allow for successive gener-
alizations to, hopefully, approach the situation on a real
financial market. The model is based on the following idea:
Since a price is a macro-observable of a financial market,
the model about price dynamics is defined on the macro
level, while any attempt to model the macro level analo-
gous to some micro level including ‘micro foundation’ is
avoided. Since we are dealing with the prices trail of in-
dices, the model is 1-dimensional. A fairly strong assump-
tion is that distributions of driving random variables are
stationary and uniformly distributed in some finite inter-
val. While, in principle respective considerations can be
conducted for other distributions, we chose the uniform
distribution to insert a minimal amount of additional in-
formation additional to what can be strictly observed.

“Price formation is endogenous in the process of trad-
ing and driven by the expectations of investors about future
growth rates of the value of an asset”. This establishes a
multiplicative stochastic negative feedback in the dynam-
ics of price formation. While on very long time scales,
market expectations might be well approximated by their
(time constant) mean, on shorter time scales it is reason-
able to assume that ‘the market expectations’ fluctuates in
time. This model is simple enough to be analyzed in some
detail which open the door for further considerations and
specifications.

The corresponding price dynamics model indeed ex-
hibits statistical properties which are in good agreement
with so-called ‘stylized facts’ drawn from empirical data,
including ‘volatility clustering’, measured by the slow de-
cay of autocorrelations of integer powers of returns and a
non-trivial spectrum of generalized Hurst exponents which
characterizes the irregularity of the return trail consid-
ered. The return distribution in this model shows a slight
skewness and, in the presence of fluctuations in the mar-
ket expectation, tails are more heavy than those from a
Laplacian distribution. Particularly tails of this distribu-
tion decay exponentially for large returns, which is well-
known from empirical returns in high-frequency data.

Taking all this together, the mechanism represented
by our model seems to be a reasonable candidate to drive
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Fig. 15. Return distribution of the S&P 500, high frequency
data, adapted from [8].

Fig. 16. Return distribution in our model with fluctuating
market expectations, see Figure 4.

prices on financial markets in general. While this is good
news on the one hand, it also shows something else: Not
too much is needed to reproduce major stylized facts.
Hence stylized facts, as apparent in the literature are not
sufficient to single out a unique sound economic model.
More data about regularities of prices (returns) and other
factors moving the market such as fluctuations in liquid-
ity are needed to approach an understanding of financial
markets’ dynamics. This, in my opinion, concerns partic-
ularly the necessity to consider the dynamics of market
micro structure.

One could draw the following conclusion: while The

Financial Market might be simple to understand con-
cerning its statistical properties, the real world problem
consists in trading on single realizations. Considerations
of the ‘entropy’ of the financial market, may serve as a
hint to which extent statements about the predictability
of the financial market are possible.

The author thanks V. Böhm for the discussion about the im-
portance of expectations for the behavior of financial markets,
U. Horst and K. Schnee for our discussion about the initial
analytical steps, as well as V.V. d’Silva for his valuable and
critical cooperation in different parts of thinking.

References

1. G. Grimmet, in Graph Theory (Academic Press, 1983)
2. R. Cont, Quantitative Finance 1, 223 (2001)
3. J.P. Bouchaud, M. Potters, Theory of Financial Risk and

Derivative Pricing (Cambridge University Press, 2003)
4. R.N. Mantegna, H.E. Stanley, An Introduction to

Econophysics: Correlations and Complexity in Finance
(Cambridge University Press, 2000)

5. B. Mandelbrot, Quarterly Journal of Economics 76, 57
(1962)

6. B. Mandelbrot, F.A., C.L., Tech. Rep. Discussion Paper #
1164, Cowles Foundation (1997)

7. J.M. E. Bacry, J. Delour, Phys. Rev. E 64 (2001)
8. E.S. R.N. Mantegna, Phys. Rev. Lett. 73, 2946 (1994)
9. O.E. Barndorff-Nielsen, Scand. J. Statist. 5, 151 (1978)

10. B.M. Bibby, M. Sorensen, Finance and Stochastics 1, 25
(1997)

11. K. Prause, Ph.D. thesis, University of Freiburg (1998)
12. M. Sorensen, in Handbook of heavy Tailed Distributions in

Finance, edited by S. Rachev (Elsevier Science, 2003), pp.
211–248

13. C.H. Hommes, Heterogeneous agent models in economics
and finance (2006)

14. A.B. et al., Phys. Rev. E 49, 1860 (1994)
15. J.P. Bouchaud, M. Potters, M. Meyer, Phys. J. B 13, 595

(2000)
16. S. Redner, Am. J. Phys. 58, 267 (1990)
17. J.M. E. Bacry, J. Delour, Modelliing financial time series

using multifractal random walks (2001)
18. T. Lux, M. Ausloos, in The Science of Disasters: Scaling

Laws Governing Weather, Body, Stock-Market Dynamics
(Springer, 2001), pp. 377–413

19. M. Ausloos, K. Ivanova, Computer Physics Communi-
cations 147, 582 (2002)

20. L.B. et al., Tech. rep., Arxiv preprint cond-mat/0501292

(2005)
21. Y. Malevergne, V. Pisarenko, D. Sornette, Quantitative

Finance (2005)
22. S. Reimann, Tech. Rep., arXiv:physics/0602097 v1 (2006)
23. S. Reimann, Tech. Rep., arXiv:physics/060301 v1 (2006)
24. W. Feller, An Introduction to Probability Theory and its

Applications (Wiley, 1971)
25. M.J. Stuzter, Entropy 2, 70 (2000)
26. C. Tsallis, C. Anteneodo, L. Borland, R. Osorio, Tech.

Rep., arXiv:cond-mat/0301307 v1 (2003)
27. S.M.D. Quieros, C. Anteneodo, C. Tsallis, Power-law dis-

tributions in economics: a non-extensive statistical ap-
proach, in Noise and Fluctuations in Econophysics, edited
by D. Abbot, J.P. Bouchaud, X. Gabaix, J.L. McCauley
(2005), Proc. SPIE, 5848

28. L. Borland, Quantitative Finance 2, 415 (2002)
29. D. Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Tech.

Rep., SFI Working Paper, 04-02-006 (2004)


